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Abstract

I A discrete warehouse is a collection of objects (robot and obsta-
cles) which are allowed to move along the grid edges of a two-
dimensional grid. In this paper, we consider motion planningI problems of a unit-square robot moving on a square grid among
unit-square obstacles, which are movable. In such a setup one is
allowed to move some of the obstacles in order to navigate the
robot between an initial and a final position of the robot in the
warehouse. The final positions of the obstacles are unimportant
for our problems. We consider two forms of obstacle manipula-
tions: (a) remote, when the obstacles are moved by a remote
mechanism, and (b) contact, when the obstacles are moved only by
direct contact of the robot. We present necessary and sufficient
conditions for the existence of a motion in both cases, and propose
efficient algorithms for constructing feasible motions. Thus, we
establish the first known class of tractable motion planning prob-lems with multiple movable obstacles.

r
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3 1. Introduction

Computational geometry, or more generally, algorithmics, is a newcomer to the multifaceted area of

1 robotics. The repertoire of robotics problems presently treated by computational geometry is admittedly

narrow in view of the total scope of robotics. Most of the recent efforts have been towards studying the

problems of motion planning. In this way there are basically two different optior-s: (a) motion planning

with fixed obstacles (or, obstacle-avoiding motion planning) and, (b) motion planning with movable obs-

tacles (or, obstacle-manipulation motion planning). First of which has been called the Piano mover's

3 problem by Schwartz and Sharir in an influential series of papers [3-6] and has been studied by many

authors since (see [91 for an overview of some of these results). In its general form the Piano Mover's

U problem is defined as follows: Given a fixed configuration of obstacles in the the Euclidean space and an

5 initial and a final configuration of a robot, determine whether there exists a continuous motion of the

robot between its initial and final configuration during which it does not intersect any of the fixed obsta-

3 cles. This problem is known to be solvable in polynomial time and space.

In contrast, the coordinated motion planning problem defined by Hopcroft eL al. [1] , relates to

I motion planning with obstacle manipulation. The problem is to determine if there exists a continuous

3 motion of a collection of disjoint movable objects constrained to move within an enclosed region,

between the initial and final configurations of the objects during which they do not penetrate either the

3 'walls" of the enclosing box, or each other. They show that even the restricted two-dimensional version

of this problem for arbitrarily many rectangles in a rectangular region is PSPACE-hard. More recently, a

5 restricted version of the problem, involving translations of one movable polygonal obszacle, was shown to

be tractable [8].

In this paper, we formulate a new class of motion planning problems similar to the

I "warehouseman's problem" [1]. We consider the following environment (see Figure 1): A warehouse

containing a robot 8 and a collection of movable and fixed obstacles 0. For our purposes we assume

I that obstacles and the robot are all square shaped with unit dimensions, and are placed on the unit square

grid. In an abstract formulation we view the warehouse as a subset (subgraph) of the unit square grid

I
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3 (graph). Each grid point is either empty, contains a movable object, contains a fixed object, or contains

the robot. Motion of robot and the obstacles is restricted to grid edges of the warehouse.

3 We define two cases for such a system depending on the manner in which obstacles are moved: (a)

by a contact motion, or (b) by a remote motion (e.g., a mechanical arm). For a contact movement the

obstacle being moved has to be adjacent to the robot. In this case, robot B is a special object which can

move on its own and all other obstacles of 0 can move only by its consequence. For a remote movement

the obstacles are moved by a remote mechanism, called the grip, and need not be adjacent to the robot. In

3 this case, robot B is like just another obstacle of 0. In both cases movement of an obstacle is valid if it

moves in an adjacent location on the grid which is empty. This configuration of obstacles and robot

I resembles a warehouse where items are stored in movable shelves and have to be retrieved by a robot

moving on the grid edges. We permit the robot to access an item from a shelf by being at one of the four

empty grid points around it.

3 For both the contact and remote motions, we study two kinds of problems: (1) how to move the

robot from an initial position to a final position in the warehouse; (2) how to construct a "clearing" (i.e., a

I free path) between two locations of the warehouse (one of these points may be a "door' on the boundary).

For both problems we present necessary and sufficient conditions for the existence of a solution and pro-

pose efficient algorithms for constructing feasible motions.

3 In Section 2, we give the basic notation and some of the definitions required for describing our

results. In Section 3, we discuss the case of remote motions. Finally, in Section 4, we outline our

I approach for contact motions.

3 2. Problem Definition

3 We denote the warehouse W by a rectilinear region of the unit square grid of size m x n. At any

instant, grid point (i, j) of the warehouse W is either empty, movable, fixed, or has a robot(e , me,f, or

3 r, respectively). We represent the type of (i, j) by T(i, j) =x, where xe e, m, f, }. For our con-

siderations only the relative positions of obstacles is important, since all the obstacle items are indistin-

3 guishable. Configuration R of the warehouse is specified by an mx n type matrix T which is like a

I
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3 snapshot of W describing the types of items for all m x n grid points of W.

Robot B is located at the grid point of type r and its coordinates are (b, by). We call, S, a set of

3 obstacle items H-consecutive if they are consecutive on a row of the array W and are all of type m.

Similarly, items of S are V-Lconsecutive if they are consecutive on a column of array W and all are of

type m. IS I denotes the number of items in S. Let SL(i,j) (resp. SR(i,j)) represent the maximal H-

3 consecutive set of items to the left (resp. right) of grid position (i, j) and let Su (i, j) (resp. SD (i, j))

represent maximal V -consecutive set of items in the upward (resp. downward) direction of grid position

3 (i, j). In the following we describe five elementary motions (EM) permitted (in terms of the above

notation) for remote and robot motion(see Figure 2).

Elementary Contact Manipulation:

3 (1) Free motion: the robot can move to an adjacent e-type grid point along the grid edges of W.

(2) Push motion: the robot can push sets SL(bx, by) and SR(b., by) (resp. Su(b., by) and SD(b., by))

of k or less H -consecutive (resp. V-consecutive) items adjacent to it in a row (resp. column) by one

3 position provided there is an empty space on the row (resp. column) within k spaces of it in the

direction of push. Then, the robot moves onc unit in the direction of push.

1 (3) Pull motion: the robot can pull sets SL(b, by) and SR(b, by) (resp. SU(b, by) and SD(bx, by)) of

k or less H -consecutive (resp. V -consecutive) items adjacent to it in a row (resp. column) by one

position provided there is an empty space right next to it on that row (resp. column) in the direction

3 of pull.

(4) Slide motion: the robot can slide sets SL(b. ± 1, by) and SR(bx ± 1, by) (resp. Su(b,, by ± 1) and

So(b , by ± 1)) of k or less H-consecutive (resp. V-consecutive) items along the row (resp.

3 column) with respect to position adjacent to it on the column (resp. row) provided there is an empty

space within k spaces of (b. + 1, by) (resp. (b1 , b, . 1)).I
I
I
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Elementary Remote Manipulation:

(5) Remote motion: Any set of k or less H -consecutive (resp. V -consecutive) items can be moved
along a row (resp. column) provided there is an empty space within k spaces of its either endU points.

Consider an m xn grid warehouse W, with 1 Sx S m and I S y S n. Grid point (x, y) is said to be

I adjacent to grid points (x - 1, y ), (x + 1, y), (x, y - 1), and (x, y + 1) (if they exist in W). Let R 0 denote

the initial configuration of W which is specified by the type-matrix To.

A configuration Rj is said to be reachable from a configuration Ri, if it can be obtained from Ri by

sequence of EMs (i.e., elementary motions). For simplicity, we say a configuration R is reachable, to

mean R is reachable from the initial configuration Ro. The robot displacement problem (RDP) is the

problem of obtaining a reachable configuration with the robot being at a specified grid point Pf. In a

configuration R there is a clearing from point P. to point Pb, if there exists a sequence of distinct points

P. =P,,, Px, . . , P;, = Pb such that P, is adjacent to P,.,, for i < k, and T(P.) = e, for all j. The

clearance construction problem (CCP) involves obtaining a reachable configuration R, which has a clear-

ing between the two specified points Po and P1 .

Grid points of type e and m are .called free grid points and grid points of type f are called rigid

3 grid points. We partition free grid points of W into equivalence classes C , C1. If a free grid point

is placed in class Ci then all the adjacent free grid points are also placed in Ci (see Figure 3). Rigid

3points form boundaries of equivalence classes. Note that type of a rigid point remains unchanged under

an elementary motion EM, thus:

Fact 1 : Equivalence classes are preserved under EM.

Consider two grid points P, and Pb. A shortest path S.,b between P, and Pb is a minimum cardi-

I nality sequence P, = P ,, P.. .... --- =Pb such that P; is adjacent to P,.,, for i 5k-1, andP is

free, for 1 5 j 5 k-I. If such a sequence does not exist (i.e., P. and Pb belong to different classes) then

we write I Si, I = a, The number of e -type grid points (holes) in class Ci is denoted by hi. By virtue of

I
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Fact I, h, 's remain the same under EM, i.e., holes are neither destroyed nor transferred.

In the next two sections, we study RDP and CCP for the cases of remote motions and contacts

3 motions.

3. Remote Motion

In this section we study remote motion planning. The grip (or, mechanical arm) is allowed to move

3 a movable shelf into an adjacent empty spot, or equivalently, to "move" an empty spot into an adjacent

movable shelf. We will adopt ti'e later convention, for it simplifies the proofs. (Using metaphor, the e/m

I type movement is similar to electuon/hole movement in semiconductors.) The (XY-)grip has only hor-

izontal and vertical movements, resembling the pen movement in an XY-plotter. In compliance with the

grid environment W and the XY -grip, all distances are measured in L I metric. The following operation,

3 performed by the grip, changes a configuration:

OP: ifT(P1)=eandT(P2)=mandP1 andP 2 areadjacentthenT(P 1 ):=m andT(P2):=e.

First we study robot displacement problem (RDP). Consider the initial configuration Ro with a dis-

3 tinguished movable obstacle 0 at the grid point Po. We aim to obtain a reachable configuration with 0

at a specified grid point P1 . Thus, an instance of RDP is specified by a pair (Po, P1 ) of grid points (and

3 an initial configuration Ro). To simplify the case analysis below, we assume Po * Pf.

3 Lemma 1 : An instance (Po, Pf) of RDP has a solution if and only if Po and Pf belong to Co and

h o > 1, where Co is the class to which Po belongs.

1 Proof : (only if) If ho = 0 then OP is not possible. Therefore configuration of Co remains unchanged.

3 (if) Consider a path (Ph = P,,.. .. P 1% = Po) from an e-type grid point (a hole) Ph to P0 . By a sequence

of OP s (interchanging type of P, and P,.,, for 0 < i < a-2) the hole is brought adjacent to Po. Now,

consider a path (Po = P, 1 .. ., PW,. = Pf ) from Po to Pf. If Pw, contains 0 (the distinguished obstacle)

3 and one of the grid points adjacent to it has a hole then we can move 0 to P,,.,, as shown in Figure 4.

Since P %_, is empty and it is adjacent to Po then (inductively) we can move 0 to P1 . 0

3In mplemcnution, chooseo mfl +

U
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As outlined in Lemma 1, an algorithm for RDP involves obtaining a shortest path Sho between Ph

and Po and a shortest path So between Po and P1 . From the previous discussion and the algorithm in

3 [2], we conclude:

Theorem I : An instance of RDP can be solved in O(ISh01 ISof I log(IShoISofl )).

Next we consider clearance construction problem (CCP). An instance of the problem involves two

points Po and Pf (and an initial configuration Ro).

3 Lemma 2 : There exists a reachable configuration with a clearing from Po to Pf if and only if

h0  1 S Of I , where Co is the class to which P0 belongs.

I Proof: (only if) Assumeh 0 < ISOf I.

3 Case I)

I So1 I = Os: In this case, Po and P1 belong to different classes. Boundary of Co consists of a set

I of rigid points, and thus, cannot be changed under OP. Therefore, in any reachable configuration

ISof = *(see Fact 1).

Case 2)

I 1SOf I *: In this case, P0 and P1 belong to the same class C o. In a clearing from Po to Pf there

3 must be a path of e -type grid points from Po to Pf. Thus the number ho of e -type grid points in Co

must be at least equal to the length of the path. Since I So1 I is the length of the shortest path then

there is no solution.

(0 Assume ho >. ISof I. We will show how to obtain a reachable configuration Rf with a clearing from

Po to P1 . Consider class Co containing Po and Pf. Let Po=PN, P ..... PT, =Pf be a shortest path

3 from Po to P f, such that P, is adjacent to P;,.,, for 0 < i :5 k-I. Inductively, assume there eu.ist a reach-

able configuration Ri with T(P.), ... , T(Pr,) = e; this is certainly the case for i = 0. Next, we show

3 that there exist a configuration R,+1 reachable from Ri with T(P ,..... T(Pr - e. Consider an e -type

3 point P, (P ,. . . .. P,.,) in Co; Such a point must exist since ho1Sof I and i 5k. By virtue of

I
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Lemma 1, there is a configuration with T(Pt) = e, where Pt is a grid point adjacent to P', with

t1 e[ {ro ..... 7ti ) (essentially by "switching" type of Py and type of PI). By sequence of mi - x, OP's

3 we obtain a configuration with T(P;,,) ,. . . , T(P,.,) = e. One more OP results in configuration Ri+1

with T(P,.,) = e (by "switching" type of P; and type of P, see Figure 5). When k = i-I. there is a

I clearing from P0 to P1 . 0

3 Lemma 2 (if part) dictates an effective procedure for constructing a clearing. Next. we will propose

an efficient implementation of the outlined procedure. When the grip is in motion it is either loaded

I (moving a movable object) or unloaded (moving toward an object to be moved). Let t be the total time

for constructing a clearing. We can write r = "t + 't,,, where "i, and r are the total time the grip is loaded

and unloaded, respectively. When the grip is loaded it moves much slower than when it is unloaded, that

3 is, t >>% . Thus, the primary objective is to minimize 'rI and the secondary objective is to minimize %.

Next, we present an optimal algorithm for minimizing "ri and a 2-approximation algorithm for minimiz-

ing r, assuming a shortest path S. from Po to P1 has been obtained.

3 Let X, be the time that it takes to move a movable shelf into an adjacent empty spot. We can write

"I = Xr1, where ri is the total number of OP's. We aim to minimize r (denoted by ri. ), or equivalently,

We assume a shortest path S., from P o to P. has been obtained. With reference to R 0 , we construct

a (complete) weighted bipartite graph G =(Ve, Vp,E), where V, is the set of e-type grid points in Co

3 and V, correspond to vertices of S.. Weight w(e) of an edge e = (v1, v2) is the length of a shortest path

(as before, in L 1 metric) from v I to v2. Consider a matching M = (e 1, • " • , e Is. I) in G. A motion 4-M

3 corresponding to M is, for each ei = (vi,, vi) e M, a sequence of w(ei) OP's resulting in a configuration

with T(vi,) = e. The number of OP's performed in gm is denoted by riM.

Lemma 3: For a minimum weighted matching M in graph G, ilM =TI..

Proof: Consider the path S. =P,, , P . In the final configuration T(P) = e, for all i. Let P3, be

3 the e-type grid point whose type was switched, by a sequence of OP's, with the type of P,,. Clearly,

3
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3 . , I, where S2,, is a shortest path from P, to Pa,. Since M is a minimum weighted match-
i-k

ing in G, and for each pair (Px,. P,) there is an edge with weight IS,, I in G then w(M) <S oC I,

or equivalently,fli T rT.. C3

I The motion .M corresponding to M can be obtained by constructing G and obtaining a minimum-

3 weighted matching in G. Using the geometric nature of the matching problem and employing the match-

ing algorithm of [7], we obtain the following theorem.

3 Theorem 2: The motion gm can be calculated in 0(1 V, 12-tlog(I V, 1)2) time.

I Given a matching M, we aim to minimize the extra movement, that is, t, = X. 3 where , is the

time it takes to move the grip from one grid point to an adjacent grid point and [3 is the total number of

3 grid points the grip traverses. Let [3 denote the optimal 3. Consider an initial position P, of the grip

(see Figure 5). When the matching is fixed (solid edges) the grip must move from P, to one of the holes

3 at Ph. The hole is brought to one of the position in the path. This process is repeated until all the holes

are brought to the path.

Let (P1, Pz). ..., (P, P,,,) be the matching constructed in the previous step. Consider the greedy

3 unloaded motion ItF: (Ps=Po. P1), ", (P,,-2, P,,-). Let 1i denote the length (in LI-metric) between

P, and P,+1.The number of unloaded movements corresponding to P.F is 3F = o + 12 + • + lm.-2.U
Lemma 4: 3F 2 2[3.

I Proof: We assume the path does not contain an empty point, i.e.. 11, 13, A- (other case is handled

similarly). 53 is movement from P 0 to some hole Pi (odd i) plus some matching between the holes (odd

P,) and points on the path (even P,).

3 Thus:

13 -1 2! 11/+13 + +/,, -i= MI (1)

where 1o" is the shortest path from P0 to some hole Pi. Also, 12t+1 + 1. due to the triangle inequality.

3 Thus,

U
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F f3-10(=12 +14 + +l,_2)S IMI-11 +- -M

I3 F-lo+ llT - IMI (2)

U From Equations (1) and (2):

I 0 -1o" +1o+M-112!3F

Since [3 2t m/2 and 1o -lo, then 2[3 > 3OF.

I Thus, the greedy motion 9F is provably good and is readily obtained.

3 Theorem 3: The motion AtF can be calculated in 0 (m) time.

The above theorem illustrates that the discrete warehouse problem under remote motion has a poly-

3 nomial algorithmic solution, which establishes it as the first class of tractable problems with multiple

3 moveable obstacles. In the next section, we show that the case of discrete warehouse problem with con-

tact motions is also tractable.

1 4. Contact Motion

3 In this section, we consider motion planning in the presence of contact obstacle manipulations. As

discussed before, the robot B must be adjacent to a movable obstacle in order to move it. Moreover,

there must be an empty location in line with the intended direction of motion. It is easy to observe that

movements of the robot in such an environment is more restrictive than in the remote environment. Here,

we consider two different kinds of robots; one which can push, pull and slide (called an F-robot) and the

3 other which can only push the adjacent obstacles (called an H-robot). We discuss necessary and

sufficient conditions for RDP and CCP for these both cases.

3 Unlike the case of remote motions not every empty location of W is reachable by the robot. More

specifically, a robot can only access empty locations which lie in a "circle" of radius k around it. The

definition of the "circle' region is different for both F- and H-robots. In the case of an H -robot (one with

3 only pushing capability) the "circle" contains locations no more than k units apart from (b, by) on the

row and column containing B. In the case of an F-robot the "circle" contains locations no more than k

3 units away from (b, by) on the rows (resp. columns) containing B, above (resp. left) B, and below (resp.

U
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right) B (see Figure 6). If there is no empty location in the influence circle of the robot then it is stuck in

that configuration. We redefine hi as the maximum number of holes that lie in the circle of influence over

3 all the configurations. It is easy to see that a robot does not endanger its chances of movement at any

time by moving all empty locations in its circle next to itself. This can be achieved by using the push and

3 slide EM s. It is also easy to see that the pull motions send the empty locations away from the "center"

and so are not useful in this respect.

Fact 2 : Pull motions do not help in using the empty holes for motion.

3 First we consider RDP. Consider the initial configuration R0 with B at Po0. We obtain a reachable

configuration with B at pf. Due to the freedom of manipulation, an F -robot is similar to a remote robot

and it can manage to move about with the help of only one hole, whereas an H -robot needs a new hole

3 every time it advances a step. Then we have the following lemmas.

Lemma 6 : An instance (Po, Pf) of RDP for an F-robot has a solution if and only if Po and Pf- belong

to Co and ho - 1, where C0 is the class to which Po belongs.

U Lemma 5 : An instance (Po, P,) of RDP for an H-robot has a solution if and only if Po and Pf belong

to C0 and h0  - ISOf I, where C0 is the class to which P0 belongs.

The existence of holes in the circle of robot can be checked in time 0 (k). Then, using a procedure

3 similar to that for the remote motion, we have the following theorem.

3 Theorem 4: An instance of RDP for contact motion can be solved in O(IS1oI IS01'I log(Shol ISo'I )).

Next, we consider the clearance construction problem (see Figure 7). In summary, We have the foi-

* lowing theorems:

3 Theorem 5 : There exists a clearing from Po to P1 in an instance of CCP for a contact motion if and

only if there are at least I Sof I holes in the circles of influence on the path.

Again by using the Euclidean matching algorithm of [71 we can construct the minimum weight matching

3 of the holes in the circles of influence to the points of the path. Thus,

I



3 Theorem 6 : The solution to CCP, when it exists can be found in 0 ( I Sof! 12-log 2 ISof I).

5. Discussion and Open Problems

In this paper we have introduced a new class of motion planning problems, called the discrete ware-

3 house problem, for robots on a two dimensional grid in the presence of movable obstacles. Our results

demonstrate that problems of this class are tractable, unlike the "warehouseman's problem" of [1].

I Besides the issues about the existence of a motion of a robot and the feasibility of a clearing, as dis-

3 cussed in this paper, one can address other aspects of this problem. For example, in some situations it is

important to know the shortest time clearing, where the goal is to reduce the total time required for a

3 clearing and not necessarily the shortest clearing. Also, questions about motions with minimum number

of elementary motions is also a natural question, which we suspect to be NP -Complete. Another interest-

I ing direction for research would be to consider this problem in a dynamic framework, where the states of

the shelves of the warehouse changes dynamically by external interactions. The problem of finding lower

bounds for the various problems is another open question.

3 This paper, establishes a framework for considering motion planning in the presence of movable

obstacles which form a significant part of the robotics problems occurring in real life.U
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